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We investigate theoretically and numerically the inverse energy cascade in statistically
steady two-dimensional turbulence. We perform a numerical testing of the analytical
results proposed by Lindborg (J. Fluid Mech. vol. 338, 1999, p. 259), and we show that
these predictions are quantitatively verified in the inverse energy cascade provided that
the quantities involved in the spatial average computation are also averaged over all
directions. Then, we define a simple measurable criterion based on the kinetic energy
induced by coherent vortices in physical space. Using this criterion, we introduce
more selective analyses of the energy cascade that reveal spatial properties of energy
transfers which are concealed by global spatial averages. We conclude that there
exist convective fluxes in both physical and scale space that feed the energy cascade
processes in strongly energetic regions. In two dimensions, these regions are mostly
localized around coherent structures. In the turbulent background, this mechanism
manifests itself as a deficit of the kinetic energy and weaker inverse energy transfers.

1. Introduction
It is well-established in the theory of geophysical fluid dynamics that the solution of

the two-dimensional incompressible Navier–Stokes equation is one of the simplest
representations where the diversity of geophysical flows can be observed (Leith
1971; Pedlosky 1979). One reason for this is the natural trend of two-dimensional
dynamics to generate organized structures, namely coherent shears and vortices, which
contain most of the energy and enstrophy of the system. The interest of studying
two-dimensional dynamics is increased at high Reynolds numbers when the flow is
turbulent and both the direct enstrophy and the inverse energy cascades are present.
In both numerical simulations (Boffetta, Celani & Vergassola 2000) and laboratory
experiments (Paret & Tabeling 1997) a global statistical description of two-
dimensional turbulent cascades can be achieved using the Kolmogorov–Kraichnan
theories which rely on the concept of an inertial range characterized by a constant
scale-to-scale transfer rate (Kolmogorov 1941; Kraichnan 1967). However, the
coherent vortices typically observed in two-dimensional flows play an important
role in the understanding of the spatial flow structure (McWilliams 1984; Elhmaidi,
Provenzale & Babiano 1993). Coherent vortices act as organizing centres of two-
dimensional dynamics and they develop basic inhomogeneities and anisotropic non-
local processes not explicitly considered in the Kolmogorov–Kraichnan approach.
The role of coherent structures in the complex transfer processes which characterize
the two cascades in the physical space remains an open issue.

A common strategy for tackling this problem is to introduce suitable diagnostics
and indicators to perform more detailed physical-space studies that are eventually
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restricted to either one flow region or another. For example, the direct enstrophy
cascade (i.e. the creation of small scales in the vorticity field) crucially depends on
how the vorticity gradients are aligned with respect to the straining field (Lapeyre,
Hua & Klein 2001). The production of the vorticity gradient by stirring depends on
the gradient’s local orientation with respect to the compressional axis of the strain-
rate tensor. Since vorticity gradients tend to align preferentially in one direction, the
enstrophy cascade is locally anisotropic (Protas, Babiano & Kevlahan 1999; Dubos &
Babiano 2002). At the same time, the cascade depends on the two-dimensional
topology described in terms of the competition between vorticity and strain (Hua &
Klein 1998), since the cascade is intensified only in well-structured hyperbolic domains
(Dubos & Babiano 2003). These strain-dominated domains usually surround coherent
vortices where the local kinetic energy is larger than the mean kinetic energy of the
flow (Elhmaidi et al. 1993). Furthermore, the presence of coherent vortices is probably
necessary for the development of the inverse energy cascade to large scales in both
decaying and forced two-dimensional turbulence. This property, typically observed
in numerical simulations (Maltrud & Vallis 1991), is also confirmed in laboratory
experiments (Paret & Tabeling 1998). One of the main conclusions of Paret &
Tabeling (1998) is that even if “the role of coherent structures in the inverse energy
cascade is an open issue” in forced two-dimensional turbulence, “the cascade is none
the less driven by an aggregation process of these structures”. The important point
here is to clarify precisely how coherent vortices modify the inverse energy transfers.

The purpose of the present contribution is to address this question on statistically
steady turbulence using data obtained from direct numerical simulation of incom-
pressible two-dimensional flow. First, we numerically investigate analytical results
proposed in Lindborg (1999) for the two-dimensional inverse energy cascade. These
results represent an extension to the two-dimensional case of the standard relations
between energy transfer rate and third-order statistics of longitudinal and transverse
velocity increments (Landau & Lifshitz 1971). Diagnostics used will be obtained from
global spatial averages in the manner of the standard formulation of the theory. We
will show that all theoretical predictions are verified provided that quantities involved
in the spatial average computation are also averaged over all directions. We then refine
this global approach and introduce one-point and two-point energy balance equations
that are local in space. These balance equations involve both spatial and scale-to-
scale transfers as a function of time and location. On average over the flow domain,
the spatial convective transfers do not contribute to the energy balance. However, a
conditional average with respect to some topological criterion is not constrained to be
zero. These transfers are analysed with conditional averages using a selective criterion
based on the distribution of the kinetic energy in physical space. We observe that
strongly energetic regions not only bound the area surrounding vortices but also the
area surrounding vortex-aggregation patches. Our study produces two main results.
First, it appears that convective transfers in physical space are consistently directed
inwards in strongly energetic regions and directed outwards in regions with low energy
(background turbulent field). Secondly, stronger scale-to-scale energy transfers are
found in strongly energetic regions. This locally enhanced inverse energy cascade is
fed by spatial energy transfers from weakly energetic regions to strongly energetic
regions.

The paper is organized as follows. After a brief review of basic Lindborg’s analytical
results in § 2, we define in § 3 one-point and two-point diagnostics for the energy
transfers. In § 4 we present our two-dimensional numerical simulations and in § 5 we
comment the results of our analyses. A discussion follows in § 6.
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2. Lindborg’s relations in two-dimensional inertial cascades
An important advance in the statistical description of two-dimensional cascades

forced at small scales has been made by Lindborg (1999).† He proposes a two-
dimensional version of Landau’s isotropic relation (Landau & Lifshitz 1971) for the
third-order moments of the velocity increments

〈δu‖δu⊥δu⊥〉 =
l

3

d

dl
〈δu‖δu‖δu‖〉, (2.1)

where l is the two-point separation vector, u‖(x) = u(x) · l/l and u⊥(x) = u(x) × l/l

denote velocity components longitudinal and transverse to l respectively, δu‖,⊥ refers
to the corresponding velocity increment and x is the position in space. Here, it is
assumed that not only are the scalar quantities isotropic but also the third-order
velocity increments tensor (Lindborg 1999). The former assumption is clearly fulfilled
when quantities involved in the spatial average computation are averaged over all
directions, so that 〈.〉 refers to the average at time t over both the position vectors x
and directions l/l. The isotropy of the tensor has been proved in three dimensions
to be the consequence of an averaging procedure over all directions (Nie & Tanveer
1999). The numerical results shown in § 5 suggest the same property in two-dimensions.

In terms of two-dimensional turbulent cascades, the two-point diagnostic derived
from the two-dimensional Navier–Stokes equation yields for incompressible flow〈(

l
l

· δu
)

(δu · δu)

〉
= 〈δu‖δu‖δu‖〉 + 〈δu‖δu⊥δu⊥〉 = 1

4
εZl3 (2.2)

in the enstrophy cascade and〈(
l
l

· δu
)

(δu · δu)

〉
= 〈δu‖δu‖δu‖〉 + 〈δu‖δu⊥δu⊥〉 = 2εEl (2.3)

in the inverse energy cascade, where εZ and εE denote enstrophy and energy transfer
rates respectively. Using (2.1), one finds from (2.2) and (2.3) respectively,

〈δu‖δu‖δu‖〉 = 〈δu‖δu⊥δu⊥〉 = 1
8
εZl3 (2.4)

in the enstrophy cascade and

〈δu‖δu‖δu‖〉 = 3
2
εEl (2.5)

〈δu‖δu⊥δu⊥〉 = 1
2
εEl (2.6)

in the energy cascade. By analogy with the Kolmogorov–Kraichnan predictions, the
criterion used to determine the direction of the energy cascade is based on the sign
of the left-hand side of (2.3) (see Lindborg 1999 for a more detailed derivation of all
these relations in the two-dimensional approximation).

Relation (2.5) expresses a global statistical link between the third-order longitudinal
velocity structure function and the scale-to-scale energy transfer rate εE in a stationary
two-dimensional inverse energy cascade. This classical result has been numerically
confirmed by Boffetta et al. (2000). A new result obtained from the isotropic relation
(2.1) is the diagnostic (2.6) that reveals the relative contribution to the energy cascade
of the component of the velocity field transverse to the two-point separation vector l .

† We do not consider the case also analysed by Lindborg where turbulence is in addition forced
at largest scales.
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We present in § 5 an extensive study of all Lindborg’s predictions based on global
spatial and azimuthal averages. Before embarking on this study, we define in the next
section local one-point and two-point energy balances. These balances will be used as a
basis for more selective analyses of the energy distribution in physical space and scale-
to-scale transfers, as well as the role played by the transverse structure of the velocity
field on the exchange of energy between different flow regions and between different
scales.

3. One-point and two-point diagnostics for the energy balance
3.1. One-point statistics

The evolution equation for the kinetic energy per unit mass u · u/2 is obtained by
multiplying the two-dimensional Navier–Stokes equation by the velocity u, and taking
the average over the flow domain D of area ΣD. We have

∂tI + µ − q = −η, (3.1)

where I , µ and q denote respectively the mean values over the flow domain of the kin-
etic energy, dissipation and forcing, all per unit mass. The quantity η is the mean con-
vective energy transfer rate per unit mass through the boundaries of the flow domain
D. For situations that have adequate boundary conditions, such as periodicity or van-
ishing velocity at the boundary, the transfer rate η is equal to zero in the flow domain.

We intend to evaluate more-local quantities in order to relate the balance equation
(3.1) to the two-dimensional topology. Thus, let Dl be a control surface of area Σl and
typical scale l centred on x in the flow domain D (for examples, circles of diameter l

with Σl � ΣD). The elementary balance equation of the kinetic energy in the domain
Dl is given by

∂tIl + µl − ql = −ηl, (3.2)

where Il , µl and ql denote respectively the mean values of the kinetic energy,
dissipation and forcing (per unit mass) in the control surface Dl and

ηl(x, t) =
1

Σl

∮
Sl

(
u · u
2

+ p

)
(u · n) ds (3.3)

is now the convective energy transfer per unit mass through the contour Sl containing
the control surface Dl , n is the unit vector normal to the boundary element ds, and
p is the pressure (Landau & Lifshitz 1971). This term ηl represents the transport in
physical space of the kinetic energy at the local velocity u and the work of pressure
forces. The left-hand side of (3.2) reflects the net local balance between the variation
of the kinetic energy and the local contribution of both the dissipation and forcing
in the control surface Dl . Thus, ηl(x, t), which is a function of time t and position x,
can be either positive or negative, respectively corresponding to outward and inward
energy flux through the contour Sl . According to (3.2), negative ηl contributes to
the growth of the kinetic energy in the control surface Dl . Conversely, positive ηl is
consistent with the local diminution of kinetic energy. The average of ηl over the flow
domain for adequate boundary conditions yields 〈ηl〉 = η = 0. However, a conditional
average of ηl with respect to a topological criterion is not constrained to be zero. The
pertinent question is whether there is a correlation between the sign of ηl and the
two-dimensional topology.

It will turn out that by using a criterion which classifies the flow topology and
restricting the statistical analysis of ηl to conditioned statistics, it is possible to
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distinguish in the physical space the regions characterized by persistent inward or
outward energy convective fluxes.

3.2. Two-point statistics

The statistics of velocity differences are the basic tool used to describe the repartition
and exchange of energy between the different scales of the flow. Following the ap-
proach adopted in the previous section, the purpose of the present section is to derive
an analogue of equation (2.3) that is local in space and time, thus providing greater
detail on the energy transfers. We focus on the energy transfers produced by the
inertial terms of the Navier–Stokes equation, and thus start from the Euler equation:

∂

∂t
u + ∇xu · u + ∇xp = 0. (3.4)

In addition to x, consider a second independent spatial variable l , define primed
fields at position x ′ = x + l

u′(x, l) = u(x + l), p′(x, l) = p(x + l)

and define their increment between x′ and x:

δu = u′ − u, δp = p′ − p.

The four functions u′, p′, δu, δp are functions of two independent spatial variables x
and l (and time). The variable x spans the space of positions while the variable l spans
the space of separations. Its norm l is the scale at which we study the fluctuations δu
of the velocity field. As shown in Appendix, the velocity increment evolves according
to

∂

∂t
δu + ∇xδu · u + ∇lδu · δu + ∇l (δp − l · ∇xp) = 0. (3.5)

Notice that δu is solenoidal with respect to both x and l . Multiplying by δu, we
obtain the balance equation for the energy δu · δu/2:

∂

∂t

δu · δu
2

+ ∇x ·
(

δu · δu
2

u
)

+ ∇l ·
((

δu · δu
2

+ δp − l · ∇xp

)
δu

)
= 0, (3.6)

where the symbols ∇x · and ∇l · stand for the divergence operators with respect to x
and l respectively.

Equation (3.6) illustrates that the variations of energy of velocity fluctuations
δu · δu/2 over the separation vector l arise from two types of transfers. First, the
evolution rate

ϕl(x, t) = ∇x ·
(

δu · δu
2

u
)

(3.7)

expresses the convective transport in physical space at the local velocity u. Here, as well
as in the preceding paragraph, negative ϕl contributes to the growth of δu · δu/2 and
vice versa. Secondly we have transfers (δu · δu/2+δp− l · ∇xp)δu in separation space l .
This flux can be divided into two parts: the transport of δu · δu/2 in separation space
at velocity δu and the pressure contribution (δp− l · ∇xp)δu. This contribution may be
written in a different form in the literature because ∇x · (δuδp) = ∇l · ((δp − l · ∇xp)δu)
(see the Appendix). An important point is that its conditional average is found
negligible in § 5.3.

Furthermore, the separation-space flux has components transverse and longitudinal
to the separation vector l that play very different roles. They each describe transfers
between separations l but with the same norm and different orientations in the
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transverse case, or with the same orientation and different norms in the longitudinal
case. Consequently, only the longitudinal component is retained in the azimuthal
integral of the balance equation (3.6). This azimuthal integral can be obtained by first
integrating (3.6) over l in the centred disk Dl of radius l bounded by the circle Sl:

∂

∂t

∫ ∫
Dl

δu ·δu
2

d2l + ∇x ·
∫ ∫

Dl

δu ·δu
2

ud2l +
∂

∂l

∮
Sl

(
δu ·δu

2
+ δp − l ·∇xp

)
δu‖ds =0,

(3.8)

then differentiating with respect to l and taking into account that ∂/∂l
∫∫

Dl
=

∮
Sl
:

∂

∂t

∮
Sl

δu ·δu
2

ds +∇x ·
∮

Sl

δu ·δu
2

uds +
∂

∂l

∮
Sl

(
δu ·δu

2
+δp − l ·∇xp

)
δu‖ds = 0. (3.9)

Similar integrations have been performed in three dimensions by Hill (2002) and by
Nie & Tanveer (1999). Note that this derivation avoids the introduction of the polar
coordinates (l, θ ) for l and remains valid and practical in three dimensions.

It is beneficial to stress here that the same procedure has been applied to the
more simple problem of passive scalar advection and scale-to-scale transfer of scalar
variance (Dubos & Babiano 2002). The variance balance derived in Dubos & Babiano
(2002) is the local version of Yaglom’s equation (Monin & Yaglom 1971). Further-
more, the scalar variance was found to be transported in physical space at velocity u
and in separation space at velocity δu. The new term that appears for energy derives
from the pressure contribution. Because this term is equal to the x-divergence of δpδu,
it has zero spatial average. Thus, the spatial and azimuthal average of equation (3.6)
gives exactly the left-hand side of the global balance relation (2.3). The other terms
come from forcing and dissipation, which we do not consider here, mainly because
small-scale viscous dissipation is irrelevant in the two-dimensional inverse energy
cascade. Thus equation (3.6) does indeed give a local view of the energy transfers
produced by inertial terms. The scale-to-scale transfer rate is described by the scalar

εl(x, t) =

(
δu · δu

2
+ δp − l · ∇xp

)
δu‖

l
, (3.10)

where we have divided by l so that εl has the physical dimension of an energy
transfer rate, like εE . An inverse energy cascade is by definition directed toward large
separations l and thus corresponds to a positive εl . We can now take advantage of
this detailed balance involving ϕl and εl defined by (3.7) and (3.10) to analyse energy
transfers both in scales and in space.

4. Numerical procedure
4.1. Numerical experiments

We simulate the motion of an incompressible fluid in a doubly periodic square
domain D by solving the evolution equation of the vorticity ω using a standard
pseudo-spectral approximation. The flow is forced at a wavenumber ki corresponding
to an injection scale of li = π/ki . We will consider two experiments with different
resolutions and configurations:

(i) 1728 × 1728 grid resolution forced at wavenumber ki = 40; this simulation is
labelled R1728F40 and presents both direct enstrophy and inverse energy cascades in
a statistically steady state over a reasonable range of scales.
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Figure 1. Top: normalized kinetic energy (circles) and enstrophy (dashed line) versus time:
(a) R1728F40, (b) R1024F256. Bottom: enstrophy (dashed line) and energy (solid line) transfer
rates: (c) R1728F40, the enstrophy transfer rate is divided by 103, (d) R1024F256.

(ii) 1024 × 1024 grid resolution forced at wavenumber ki = 256; this simulation
is labelled R1024F256 and presents a well-developed inverse energy cascade in a
statistically steady state.
Forcing is modelled by numerically imposing a constant value on the amplitude of
the Fourier mode ki . Dissipation includes large-scale linear friction in addition to the
iterated Laplacian at small scales:

D = −t−1
c

(
− l2c ∇2

)α
ω + t−1

d l−2
d ψ, (4.1)

where α =8; lc and ld are the smallest and the largest resolved scales respectively; tc
and td are characteristic dissipation times; and ψ is the stream function. In simulation
R1024F256 the iterated Laplacian at small scales is replaced by the strain diffusivity
model which conserves energy and has a substantial impact on the energy transfer
to large scales, particularly when the enstrophy cascade is almost entirely unresolved
and parametrized (Dubos 2001).

Figure 1 shows the behaviour of the most important control characteristics of our
numerical simulations. Kinetic energy E and enstrophy Z = 〈ω2〉/2 are normalized by
their corresponding mean values over a time interval of the order of 50 turnover times
for R1728F40 and 200 turnover times for R1024F256. The turnover time tr is defined
by tr =Z−1/2 (Z =6.5 × 104, E = 115 for R1728F40 and Z = 3.4 × 106, E = 1700 for
R1024F256). Both simulations are characterized by stationary and scale-independent
transfer rates in the inertial ranges. A stationary state is maintained during a time
period of 3 × 104�t with a time step �t = 10−5 for the two simulations.
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Figure 2. Distribution in the physical space of the kinetic energy normalized by the mean
kinetic energy of the flow: experiment R1024F256.

4.2. Global and conditional statistics

The erratic character of turbulence makes a statistical treatment of balance equations
necessary. A complete (spatial, temporal and azimuthal) averaging procedure leads
to Lindborg’s Kolmogorov-like relations (2.2)–(2.6). We will show in § 5.1 that these
relations are well-satisfied even without temporal averaging provided the azimuthal
average is performed carefully. The azimuthal average at a given scale l applied on
each position x in space includes M values of the azimuthal angle between 0 and 2π on
the circle centred at x. The interpolation in physical space is performed using a third-
order method. A comparison between this procedure and a more precise computation
in Fourier space using convolution products shows that statistical convergence is
reached for M =14.

However, relations (2.2)–(2.6) provide no details on the spatial variability of the
cascade process: a less complete spatial averaging procedure will be necessary for this
study. Thus, while always performing the azimuthal average, we will also consider
conditional averages of the fluxes introduced in the preceding paragraphs, specifically
the convective transport rates ηl and ϕl and the scale-to-scale transfer rate εl . The
averages are conditioned on some quantity which is assumed to be representative
of the flow topology. Sections 5.2 and 5.3 illustrate that the normalized local kinetic
energy e(x) = u · u/2ē, where ē refers to the mean kinetic energy of the flow, plays this
role rather well: conditional averages with respect to energy depart significantly from
the global average and reveal local features of the energy cascade. Figure 2 shows
the spatial distribution of the normalized kinetic energy in simulation R1024F256.
Energy concentrations correspond to coherent vortices in which the maximum energy
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is attained at the injection scale li = π/ki (see Elhmaidi et al. 1993 and Paret & Tabeling
1998 for a more detailed discussion). It can also be seen that energy concentrations
associated with vortices define large-scale structures of various sizes that are enclosed
by energy levels close to two times the mean value ē (vortex-aggregation patches).

Let ζl be the transport rate ηl or ϕl defined by (3.3) and (3.7) respectively. The sign
of the total contribution of these transport rates at a given length scale l and as a
function of the kinetic energy is statistically defined by the sign of the conditioned
quantity

Eζ (e) =
∑

e−�e<e(x)�e+�e

ζl(x). (4.2)

This sum is conditioned on the energy e so that Eζ (e) reflects the total contribution of
all fluxes ζl observed at given energy level e ± �e, where �e is a constant bin width.

Analogously, we define two partial averages for ζl = ηl, ϕl or εl:

〈ζl〉e�1 =
1

N

∑
e(x)�1

ζl(x), (4.3)

〈ζl〉e>1 =
1

N

∑
e(x)>1

ζl(x), (4.4)

where N is the total number of points in the simulation box. Strictly speaking,
instead of dividing by N , we should divide Eζ (e) by the number of points for which
e − �e < e(x) � e + �e and also divide 〈ζl〉e�1 and 〈ζl〉e>1 by the number of points for
which e(x) � 1 and e(x) > 1 respectively. The convention we have adopted has the
advantage of being straightforwardly linked to the global average, so that we have
simply 〈ζl〉 = 〈ζl〉e�1 + 〈ζl〉e>1 for instance.

5. Results
5.1. Lindborg’s relations: global averages

We focus here on the numerical verification of the isotropic relation (2.1) for the
third-order velocity structure functions in both the inverse energy cascade (simulation
R1024F256) and the direct enstrophy cascade (simulation R1728F40). Isotropic
relation (2.1) is analysed in the form

〈δu‖δu⊥δu⊥〉
〈δu‖δu‖δu‖〉 =

1

3

d log〈δu‖δu‖δu‖〉
d log l

, (5.1)

where as pointed out above 〈.〉 refers to the average at time t over both the position
vectors x and azimuthal directions l/l.

In figure 3 we compare the two sides of relation (5.1) by plotting as a function
of the normalized length scale l/ li the ratio 〈δu‖δu⊥δu⊥〉/〈δu‖δu‖δu‖〉 (circles) and

the logarithmic derivative 1
3
d log〈δu‖δu‖δu‖〉/d log l (dashed line). The relation (5.1)

appears to be well-satisfied at all scales. As recognized in Babiano, Basdevant &
Sadourny (1985) the scalar relation between longitudinal and transverse velocity
increments does not characterize isotropy but is only a consequence of it. The results
shown in figure 3 only confirm the previous statement and show that the azimuthal
average used in our computation including 14 azimuthal directions l/l ensures a
good statistical ‘isotropization’.

Figure 4 represents the corresponding 〈δu‖δu‖δu‖〉 and 〈δu‖δu⊥δu⊥〉 behaviours. At
viscous scales, a kinematic scaling with l5 is expected (Lindborg 1999). Thus, in the
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of the normalized length scale. (a) Experiment R1728F40: relations (2.2) (circles) and (2.4)
(solid line, longitudinal; dashed line, transverse); (b) experiment R1024F256: relations (2.3)
(circles), (2.5) (solid line) and (2.6) (dashed line).

enstrophy cascade results are rescaled by l3 (figure 4a, simulation R1728F40; circles
and dashed line for 〈δu‖δu‖δu‖〉 and 〈δu‖δu⊥δu⊥〉 respectively) and by l5 (triangles
and dotted line). In the inverse energy cascade results are rescaled by l (figure 4b,
simulation R1024F256). Cubic and linear dependences in the enstrophy and energy
cascade ranges as predicted by the theory, as well as the kinematic scaling with l5

at smallest scales, are well-satisfied. This last result once again gives support to the
validity of the computation. A large plateau which follows the linear scaling (2.5)
and (2.6) in the inverse energy cascade is observed in figure 4(b). This plateau is
consistent with the behaviour of the left-hand side of (5.1) displayed in figure 3(b),
which is constant at a value close to 1/3. However, prediction (2.4) in the enstrophy
cascade range correlates more weakly with the simulation R1728F40: figure 3(a)
displays an approximate plateau around 1, corresponding in figure 4(a) to a short
transition through a l3 scaling. Relation (2.4) in the direct enstrophy cascade has been
verified with great precision in a higher-resolution simulation (4096 × 4096) forced at
a low wavenumber ki = 4 (Lindborg & Alvelius 2000). In that setup only the direct
enstrophy cascade was simulated. The weak support for equation (2.4) in our case may
be attributed to the shorter range of scales over which the enstrophy cascade develops.
Our choice of a larger wavenumber ki =40 in the R1728F40 experiment is made to
simulate both enstrophy and energy cascades over a reasonable range of scales, which
should highlight that our observations of the convective and scale-to-scale energy
transfer rates are specific to the inverse energy cascade.

In order to study not only scaling exponents but also proportionality constants we
computed spectral enstrophy and energy transfer rates εZ and εE . We were then able
to obtain all constants involved in relations (2.2)–(2.6). The results are displayed in
figure 5. All three constants in the energy cascade range are in remarkable agreement
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with the values predicted in Lindborg (1999) (figure 5b). However, the results in the
enstrophy cascade range (figure 5a) are slightly lower than that expected. All the
above results show that what we have observed in our numerical simulations using
a global average procedure is indeed a two-dimensional inverse energy cascade as
described in § 2.

For completeness, let us mention that the same study performed without azimuthal
averaging produces an inextricable set of results. In our numerical data, both the sign
and the sign change of the non-‘isotropized’ mean third-order moments display an
obvious dependence on the direction l/l. This problem is more acute than in three-
dimensional turbulence because of the small skewness of two-dimensional velocity
increments in inertial ranges (Paret & Tabeling 1998). In Paret & Tabeling (1998), the
isotropy of the two-dimensional flow was analysed in terms of the two-dimensional
energy spectrum, which is a second-order moment. The authors conclude that the
cascade mechanism involves an efficient isotropization of the flow. We find that in
the case of third-order moments the situation is less clear. In accordance with these
results we will base our further analysis on azimuthal averages.

5.2. Conditional one-point statistics

We first present a study of relation (3.2) conditioned by the normalized kinetic energy
e(x) = ũ2/2ē, where ē refers to the mean kinetic energy and ũ2/2 is its local mean value
over each contour Sl centred on x. According to the elementary balance (3.2), energy
fluxes through the boundary of the control surface Dl are statistically inward or
outward depending on the sign of the conditioned quantity Eη defined by (4.2) (with
ζl = ηl defined by (3.3)). Negative Eη correspond to inward energy fluxes and vice versa.

The behaviour of Eη as a function of the normalized kinetic energy e for normalized
scales l/ li = 3, 5 is presented in figure 6(a) (simulation R1024F256). We observe a
positive lobe in the domain e < 1 and a negative lobe in the domain e > 1. By
definition, the average value of Eη is zero, which results in an overall cancellation of
these two lobes. It is most important to note that positive and negative values for Eη

occur for e < 1 and e > 1 respectively. Hereafter, we will base our conditional analyses
on this property.

We now turn to the length-scale dependence of conditional inward and outward
convective transport rates ηl defined by (3.3). Figure 6(b) shows the non-conditional
〈ηl〉 and the conditional 〈ηl〉e, defined as (4.3)–(4.4), as a function of the length scale.
The conditional averaging is performed with respect to e � 1 (bold dashed lines) or
e > 1 (bold solid lines) as is suggested by the shape of Eη. All quantities have been
normalized by the global scale-to-scale energy transfer rate εE . The non-conditional
〈ηl〉 confirms at all scales the expected zero mean value (dotted line). As a result,
values for the conditional 〈ηl〉e are naturally symmetric with respect to the 〈ηl〉 = 0
axis. By definition, the local departure from the equilibrium among energy dissipation,
forcing, and time variation terms (left-hand side of (3.2)) is expressed by ηl . The latter
is obtained from (3.3) by adding the contributions from the kinetic energy transport
(circles) and the work of pressure forces (triangles).

For comparison, figure 6(b) also displays the conditional 〈ηl〉 for the corresponding
random field where all structures have been destroyed by randomizing the phase of
Fourier coefficients (thin solid and dashed lines). This last result confirms the role of
the two-dimensional spatial structure in the convective energy transfers in the physical
space.

We draw two main conclusions from these numerical results. First, it seems that
the mean kinetic energy is a criterion to discriminate between positive and negative
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Figure 6. Conditional one-point statistics for experiment R1024F256. (a) Behaviour of Eη as
a function of the normalized kinetic energy for two separations l/ li =3(solid line), 5(dashed
line); (b) behaviours of 〈ηl〉 (dotted line) and 〈ηl〉e (bold lines) normalized by εE as a function
of the normalized length scale; kinetic energy (circles) and pressure (triangles) contributions.
See text for complete description of line styles.

balance in the relation (3.2). Secondly, persistent inward energy fluxes (Eη < 0) occur
in strongly energetic regions, whereas outward fluxes (Eη > 0) characterize the low
energetic turbulent background. Thus, the competition between energy concentration
and dissipation predominantly occurs in the strongly energetic regions. These regions
correspond to the hyperbolic (strain-dominated) domains at the periphery of coherent
structures as well as the moderately elliptic (vorticity-dominated) domains which
surround vortex cores (Elhmaidi et al. 1993). Since energy dissipation processes are
particularly dominant at large scales in two-dimensional flows one may conclude
that the main effect of inward fluxes is to maintain and reinforce high energy levels
at the expense of the turbulent background. This picture is consistent with the
trend towards the concentration of energy observed in two-dimensional turbulent
flows. In our numerical experiment, 〈ηl〉e appears as a non-negligible fraction of εE:
〈ηl〉 	 ± 0.1εE (see figure 6b).

5.3. Conditional two-point statistics

Figure 7 displays Eϕ(e) for the transport rate ϕl which is defined by (3.7), for two
separations l/ li = 3, 5 lying in the energy cascade range. The quantity Eϕ is analogous
to the total flux Eη studied in § 5.2. Just as before, although less clearly, Eϕ tends to
be positive (outward fluxes) for small kinetic energies e and negative (inward fluxes)
for larger kinetic energies, with the sign change occurring around the average kinetic
energy. According to the balance equation (3.6), this again implies that the convective
transport in physical space tends to drag the energy δu · δu/2 away from low-energy
regions (turbulent background) and toward high-energy regions (surrounding vortices
and vortex-aggregation patches).
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kinetic energy for two separations l/ li = 3(solid line), 5(dashed line). Experiment R1024F256.
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(a, b, c) Experiment R1024F256; (d, e, f ) experiment R1728F40.

As in § 5.2, we now analyse partial averages (4.3)–(4.4) for the transport rate ϕl

defined by (3.7) as a function of the length scale, as shown in figure 8. Thus, the
conditional averaging is now simply taken with respect to the conditions e � 1 (bold
dashed line) and e > 1 (bold solid line). We also verified that the spatial average of
〈ϕl〉 is zero (dotted curve). As a result, the curves corresponding to partial averages
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Figure 9. Conditional two-point statistics for experiment R1024F256. Behaviour of 〈εl〉
(circles) and 〈εl〉e (bold dashed line: e � 1; bold solid line: e > 1) and corresponding longitudinal
and transverse contributions reduced by εE/2. Universal plateaux discussed in § 5.1 are indicated
(dotted line). See text for further details.

are symmetric with respect to the 〈ϕl〉 = 0 axis. The average transport rates are
computed in the experiments R1024F256 (left, panels a–c) and R1728F40 (right,
panels d–f ), and are normalized by the corresponding energy transfer rate εE

and plotted as a function of the normalized scale l/ lI . Furthermore, they are split
into the longitudinal contribution ϕ

‖
l = ∇x · (u δu2

‖/2) (panels c, f ) and the transverse

contribution ϕ⊥
l = ∇x · (u δu2

⊥
/2) (panels b, e) which sum to ϕl = ϕ⊥

l +ϕ
‖
l (panels a, d).

Again, in order to make sure that any observed property is not merely the footprint
of the energy spectrum and does result from phase correlations due to spatially
coherent structures, we also performed the same computations on a randomized
field. The resulting curves (thin solid and dashed lines) fall close to the 〈ϕl〉 =0
axis, implying that phase correlations are indeed needed for 〈ϕl〉e to maintain a
well-defined sign. It can be observed that the conditionally averaged 〈ϕl〉 takes
values with orders of magnitude comparable to εE inside the inverse cascade range
1 � l/ lI � 10, while it rapidly decreases to values much smaller than εE outside this
range. This is particularly true in the enstrophy cascade, almost non-existent in the
experiment R1024F256 but well-developed in the experiment R1728F40 (panels d–f ).
This means that the inverse energy cascade causes an efficient development of the
convective transfer rate ϕl . In both experiments, the total 〈ϕl〉e results mainly from the
transverse contribution (panels b and e) while the longitudinal contribution is smaller
(panels c and f ). Note that the previously observed sign trend holds consistently
throughout the energy cascade range for the three transport rates ϕl, ϕ

‖
l , ϕ⊥

l .
We complete this analysis of spatial transfer of velocity fluctuations by analysing

the corresponding scale-to-scale transfer rate εl defined by (3.10). We plot in figure 9
the scale-to-scale transfer rate εl (panel c) split into longitudinal contribution (δu‖)

3/2
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(panel a) and transverse contribution (δu⊥)2δu‖/2 (panel b). Each contribution is
summed either over the whole box (circles) or over regions where e < 1 (bold dashed
line) or e > 1 (bold solid line). Global averages (circles) have already been displayed
in figure 5(b). Transfer rates are normalized by εE/2 and plotted as a function
of the normalized scale l/ li . We checked that the contribution of the pressure term
(δp− l · ∇xp)δu‖/l is less than 2% of the energy transfer rate ε and therefore negligible
at all scales in the energy cascade range (figure 9c, thin solid and dashed lines). For
scales slightly larger than the injection scale, low-energy regions contribute more
than high-energy regions to the scale-to-scale transfer (both contributing positively).
This implies that the cascade takes place predominantly in low-energy regions at the
smallest scales of the energy cascade range. However, efficient scale-to-scale transfers
in the turbulent background collapse at larger scales, which is consistent with the
development of convective fluxes from the weakly energetic regions to the strongly
energetic regions observed in figure 8. As a result, for all scales where Lindborg’s
relations (2.3), (2.5) and (2.6) are well-verified and indicate a fully developed cascade,
the converse is true: high-energy regions contribute significantly more to the inverse
energy cascade than low-energy regions. The low-energy contribution even drops to
zero before the end of the inertial range.

From these observations it is possible to draw two important conclusions. First, the
fully developed inverse energy cascade takes place mainly in highly energetic regions.
Secondly, the turbulent background, often considered a passive turbulent medium, in
fact plays the role of an energy reservoir for such an inverse cascade process.

6. Discussion
We checked numerically the isotropic relation (2.1) and the Kolmogorov-like

relations (2.3)–(2.6). Relation (2.1) being very well-verified, we can be confident that
our averaging procedure is sufficiently isotropic. This being achieved, the dynamical
relations (2.3)–(2.6) and universality of corresponding proportionality constants were
found to hold even instantaneously. Nevertheless, there is no reason why the cascade
should locally obey these global properties. We thus refined the global statistical
analysis in order to take into account the spatial variability of both the energy
distribution and the cascade processes. One-point diagnostics for the energy balance
consistently confirm the trend towards energy concentration in two-dimensional
turbulent flows. In addition, it seems that the mean kinetic energy is a sufficient
discriminant to reveal consistent trends in the energy balances that significantly
depart from the globally averaged tendency. This is important because energy is a
measurable quantity. Our results show that the convective energy flux 〈ηl〉e in the
physical space toward high-energy regions has a magnitude of about 0.1εE . This value
may depend on the details of the setup.

Furthermore, using energy as a discriminant we can analyse scale-to-scale transfers
involved in the inverse cascade. The balance equation (3.6) provides a local
generalization of the statistical relation (2.3). In the resulting picture of the cascade,
scale-to-scale transfers (3.10) are supplemented by convective fluxes in physical space
(3.7) which complete the local energy balance. Analysing their behaviour as a function
of scale and of the local kinetic energy, we derive the following conclusions:

(i) The observed trends reveal the existence of a feeding mechanism of strongly
energetic regions surrounding coherent structures compensated by a corresponding
deficit of energy δu · δu/2 in the turbulent background. Our numerical investigations
show that the transverse contribution to the convective transfers is consistently
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Figure 10. Local scenario of two-dimensional inverse energy cascade.

stronger than the longitudinal contribution. This is in contrast to the scale-to-scale
transfers, to which the longitudinal structure function predominantly contributes.

(ii) Energy transfer towards large scales in a developed inverse energy cascade
predominantly take place in highly energetic regions. This mechanism is however
reversed at scales moderately larger than the injection scale, where the inverse energy
cascade is principally supported by the turbulent background. In this sense, the
turbulent background should be considered to be an active turbulent medium.

These trends are sketched in figure 10. The overall trend of energy transfer toward
large scales is refined by spatially distinguishing low-energy regions (left) from high-
energy regions (right). These two regions exchange energy to the average benefit
of high-energy regions, especially at inertial scales where the energy flux 〈ϕl〉e has
a magnitude of about εE (horizontal arrows). For instance, the energy given by
low-energy regions feeds the inverse cascade in high-energy regions. Simultaneously,
energy is exchanged at the rate 〈εl〉e between scales to the average benefit of larger
scales (bold vertical arrows). These two trends are connected to each other if we
assume statistical steadiness and neglect the contributions of forcing and dissipation
to the energy balance. Consequently, the inverse energy cascade in the background,
which is rather strong at scales just above the injection scale, collapses at larger scales.
Conversely, the observed inter-scale energy flux is stronger in high-energy regions,
especially at scales where the cascade is fully developed.

This local scenario, based on our numerical analysis, emphasizes that it would
be erroneous to consider that the forced inverse energy cascade in two-dimensional
turbulence locally obeys the statistical balance predicted by global statistical theories.
Our selective analysis reveals several local-in-space features. This point becomes
particularly important when one focuses on a limited region of the flow, as is usually
the case in most situations of practical interest. Another question worth exploring
is the investigation of the analogous scenario in the framework of decaying two-
dimensional turbulence. Finally, an important issue to explore is how much the
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two-dimensional local features analysed in the present work are shared by the three-
dimensional direct energy cascade.

We are deeply indebted to Suelin Chen who has carefully proofread and corrected
this paper. We gratefully acknowledge Patrick Tabeling for useful discussions of these
topics. We also wish to thank anonymous referees for helping us improving the clarity
and completeness of the paper by their comments and suggestions.

Appendix. Balance equation for the velocity increments
Writing the Euler equation (3.4) at point x + l , one obtains

∂

∂t
u′ + ∇xu′ · u′ + ∇xp

′ = 0. (A 1)

Furthermore, because u and p do not depend on l we have

∇lδu = ∇l (u′) = ∇x(u′), ∇lδp = ∇l (p
′) = ∇x(p

′) (A 2)

so that
∂

∂t
u′ + ∇lδu · u′ + ∇lδp = 0. (A 3)

Combining the equations (3.4) for u and (A 3) for u′ we obtain for the velocity
increment δu

∂

∂t
δu − ∇xu · u + ∇lδu · u′ + ∇lδp − ∇xp = 0. (A 4)

We can add ∇xu′ · u and substract ∇lδu · u to obtain

∂

∂t
δu + ∇xδu · u + ∇lδu · δu + ∇lδp − ∇xp = 0. (A 5)

Again because p is independent of l , ∇xp = ∇l (l · ∇xp) and we can rewrite this
equation as (3.5).

Otherwise, since by (A 2) ∇l (δp) = ∇xp
′ we moreover have from (A 5) that

∂

∂t
δu + ∇xδu · u + ∇lδu · δu + ∇xδp = 0, (A 6)

which is an equivalent form of (3.5). To the two forms of the pressure contribution
to the momentum balance (3.5) correspond to two forms of the pressure contribution
to the energy balance (3.6): ∇l · ((δp − l · ∇xp)δu) and δu · ∇xδp = ∇x · (δuδp).

Relation with previous work

Relations (3.5) and (A 6) follow from the Lagrangian approach introduced by
Monin & Yaglom (1971, p. 401) and recently pursued by Lundgren (2003). Consider
the Lagrangian trajectory x(t) of a fluid element and the reference frame translating
with it. In this reference frame, the independent spatial variable is l and the relative
velocity field is v(l, t) = δu(x(t), l, t). This reference frame is translating relatively to
the original Galilean reference frame with acceleration −∇xp(x(t)), hence v almost
obeys the Euler equation; we only need to add the inertial force ∇xp(x(t)) on the
right-hand side:

∂v

∂t
+ ∇lv · v = ∇xp − ∇lp

′. (A 7)
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Relation (A 6) is obtained by returning to a fully Eulerian description where x
is also an independent spatial variable (∂v/∂t = ∂(δu)/∂t + ∇xδu · u(x, t)) and using
∇xp − ∇lp

′ = −∇xδp.
Lundgren further transformed equation (A 7) by including the inertial force ∇xp in

the pressure field (Lundgren 2003) in the same way that relation (A 6) may be recast
as (3.5). Expressing Lundgren’s equation in a fully Eulerian description, one obtains
(3.5).

The form ∇x · (δuδp) of the pressure term is the one obtained by Hill (2002), who
also includes viscous and forcing terms. Notice that Hill obtains a spatial advection
at the velocity U = (u′ + u)/2 due to a slightly different set of independent variables:
his position is not x but X = (x + x ′)/2. These variables were also used in Dubos &
Babiano (2002). The algebra is then more symmetric and slightly simpler, especially
for viscous terms. The main advantage of the independent variables (x, l) used in the
present work over the variables (X, l) is that the relations (3.5), (3.6) have the simple
physical interpretation of momentum and energy balances in the co-moving reference
frame.
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